In the spatial domain

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt = \tilde{f}(x)$$

Convolution kernel, filter g(x)Filtered signal $\tilde{f}(x)$

In the spatial domain

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt = \tilde{f}(x)$$

Теорема А.2 (ФУБИНИ). Если
$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(x_1, x_2)| dx_1 \right) dx_2 < +\infty$$
, то
 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x_1, x_2) dx_1 dx_2 = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x_1, x_2) dx_1 \right) dx_2$
 $= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x_1, x_2) dx_2 \right) dx_1.$

Теорема о преобразовании Фурье свертки

Теорема. (О свёртке) Пусть $f \in L^1(R)$ и $h \in L^1(R)$. Функция g = h * f принадлежит $L^1(R)$ и

$$\hat{g}(\omega) = \hat{h}(\omega)\hat{f}(\omega) \quad (\hat{g}-\text{преобр. Фурье g})$$

Доказательство:

$$\hat{g}(\omega) = \int_{-\infty}^{+\infty} \exp(-it\omega) \left(\int_{-\infty}^{+\infty} f(t-u)h(u) du \right) dt$$

Так как |f(t-u)||h(u)| интегрируема в R^2 , мы можем применить теорему Фубини, и замена переменных $(t,u) \to (v = t - u, u)$ даёт

$$\hat{g}(\omega) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp(-i(u+v)\omega)f(v)h(u)\mathrm{d}u\mathrm{d}v = \left(\int_{-\infty}^{+\infty} \exp(-iv\omega)f(v)\mathrm{d}v\right) \left(\int_{-\infty}^{+\infty} \exp(-iu\omega)h(u)\mathrm{d}u\right) \left(\int_{-\infty}^{+\infty} \exp(-iu\omega)h(u)\mathrm{d}u\right$$

теорема доказана.

Spatial domain

f(x)

Convolution

f(x) * g(x)

Multiplication

 $F(\omega) \cdot G(\omega)$

Removing motion blur from a single image

Sources of blur

Object motion

Object motion

 Translation of camera

Object motion

Translation of camera

 Rotation of camera

Object motion

Translation of

Rotation of camera

camera

Point Spread Function (PSF)

Convolution model motivation

- Assume:
 - No image plane rotation
 - No object motion during the exposure
 - No significant parallax (depth variation)

Violation of assumption:

Convolution model motivation

- Assume:
 - No image plane rotation
 - No object motion during the exposure
 - No significant parallax (depth variation)

Experimental validation:

8 subjects handholding DSLR with 1 sec exposure

Close-up of dots

Convolution Model

- Notations
 - L: original image
 - K: the blur kernel (PSF)
 - N: sensor noise (white)

- B: input blurred image

<u>Generation rule:</u> $B = K \otimes L + N$

How can the image be recovered?

Goal:

- Recover L s.t.:
 - $\mathsf{B} = \mathsf{K} \otimes \mathsf{L}$

Assumptions:

- Known kernel (PSF)
- Constant kernel for the whole image
- No noise

De-blur using Convolution Theorem

Convolution Theorem: $\Im[f \otimes g] = \Im[f] \cdot \Im[g]$

$$B = L \otimes K \Longrightarrow \qquad \mathfrak{I}[B] = \mathfrak{I}[L \otimes K] \Longrightarrow$$

$$\mathfrak{I}[B] = \mathfrak{I}[L] \cdot \mathfrak{I}[K] \Longrightarrow \quad \mathfrak{I}[L] = \mathfrak{I}[B] / \mathfrak{I}[K] \Longrightarrow$$

$$\boldsymbol{L} = \mathfrak{I}^{-1} \left[\mathfrak{I} \left[\boldsymbol{B} \right] / \mathfrak{I} \left[\boldsymbol{K} \right] \right]$$

<u>Blurred</u> <u>Image</u>

<u>PSF</u>

$L = \mathfrak{I}^{-1}[\mathfrak{I}[\mathfrak{B}]/\mathfrak{I}[\mathfrak{K}]/\mathfrak{I}[\mathfrak{K}]/\mathfrak{I}[\mathfrak{K}]]$ Example: $\mu = 0, \sigma = 0.0$ Deconvolution is unstable

Regularization is required

Window size:

Aliasing \rightarrow

Dirac delta function

• Definition

$$\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases} \qquad \int_{-\infty}^{\infty} \delta(x) dx = 1$$

Sifting property

$$\int_{-\infty}^{\infty} f(x)\delta(x-x_0)\,dx = f(x_0)$$

Dirac delta function

Impulse Train

Sampling

Spatial domain: multiply signal with impulse train

$f(x) \to f(x)III_T(x)$

Sampling

Spatial domain: multiply signal with impulse train

$$f(x) \to f(x)III_T(x)$$

Frequency domain: convolve signal with Fourier transform of impulse train

$$F(\omega) \to F(\omega) * III_{\omega_0}(\omega)$$

Sampling and reconstruction

Sampling and reconstruction

Some Aliasing Artifacts

• Spatial: Jaggies, Moire

• *Temporal:* Strobe lights, "Wrong" wheel rotations

• *Spatio-Temporal:* Small objects appearing and disappearing

Disintegrating Texture

- The checkers on a plane should become smaller with distance.
- But aliasing causes them to become larger and/or irregular.
- Increasing resolution only moves the artefact closer to the horizont.

Spatial Aliasing

Loss of Detail

Moire Patterns

Moire Patterns

